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Abstract
Quantitative models that simulate the inheritance and evolution of fitness-linked traits 
offer a method for predicting how environmental or anthropogenic perturbations can 
affect the dynamics of wild populations. Random mating between individuals within 
populations is a key assumption of many such models used in conservation and man-
agement to predict the impacts of proposed management or conservation actions. 
However, recent evidence suggests that non-random mating may be underestimated 
in wild populations and play an important role in diversity-stability relationships. Here 
we introduce a novel individual-based quantitative genetic model that incorporates 
assortative mating for reproductive timing, a defining attribute of many aggregate 
breeding species. We demonstrate the utility of this framework by simulating a gener-
alized salmonid lifecycle, varying input parameters, and comparing model outputs to 
theoretical expectations for several eco-evolutionary, population dynamic scenarios. 
Simulations with assortative mating systems resulted in more resilient and productive 
populations than those that were randomly mating. In accordance with established 
ecological and evolutionary theory, we also found that decreasing the magnitude of 
trait correlations, environmental variability, and strength of selection each had a posi-
tive effect on population growth. Our model is constructed in a modular framework 
so that future components can be easily added to address pressing issues such as the 
effects of supportive breeding, variable age structure, differential selection by sex 
or age, and fishery interactions on population growth and resilience. With code pub-
lished in a public Github repository, model outputs may easily be tailored to specific 
study systems by parameterizing with empirically generated values from long-term 
ecological monitoring programs.
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1  |  INTRODUC TION

Aggregating species, such as many fishes, sea turtles, and migrat-
ing birds, as well as sessile species, such as plants and many benthic 
invertebrates, have evolved complex and dynamic metapopulations 
made up of locally adapted subpopulations (Hanski, 1998). This spa-
tial and temporal distribution of individuals can buffer metapopu-
lations against disruptive events that influence any one subunit 
(Brennan et al., 2019; Schindler et al., 2010). Dynamic processes of 
dispersal and gene flow between subpopulations can reduce fitness 
losses due to inbreeding depression (Greenwood et al., 1978), influ-
ence rates of adaptation (Garant et al.,  2007), and facilitate colo-
nization or recolonization of available habitat (Yeakel et al., 2018). 
However, an understudied aspect of metapopulation biology is the 
effect of within-population eco-evolutionary processes on popu-
lation fitness and viability, such as assortative mating or fine-scale 
spatial or temporal substructure. Despite the prevalence of such 
processes in real populations, the majority of existing models used 
to inform management about the predicted effects of anthropo-
genic perturbations (e.g., harvest, climate change, and supportive 
breeding) assume random mating within populations. Disentangling 
the effects of processes that influence fine-scale population sub-
substructure or assortative mating is more complicated but will 
more accurately represent the dynamics of wild populations.

Non-random mating within a population can occur through a 
variety of overlapping mechanisms (Crespi, 1989; Kopp et al., 2018; 
Wang et al., 2019). Here, we consider assortative mating as a positive 
correlation of genotypes or phenotypes between mated pairs (Jiang 
et al., 2013). This correlation could occur through mechanisms such 
as (1) mate choice based on phenotype; (2) fine-scale temporal or 
spatial autocorrelation of phenotypes, including cases where space 
or time are considered as ‘traits’; (3) phenotypic changes over time, 
resulting in an increase in phenotypic correlations between mates; or 
(4) by patterns of selection on the pool of potential breeders (Jiang 
et al.,  2013; Kopp et al.,  2018; Rios Moura et al.,  2021; Sørdalen 
et al., 2018). Assortative mating based on phenotype has been stud-
ied in a number of wild fish species, with the majority of examples 
around the world focused on the evolution of traits such as size (de 
Borghezan et al., 2019; Rios Moura et al., 2021; Rueger et al., 2016) 
or color (Utagawa et al., 2016). In the North Pacific Ocean, long-term 
ecological monitoring studies on salmon (e.g., Barnett et al., 2019; 
Ford et al., 2015; Lin et al., 2017; May, 2022; Peterson et al., 2014) 
have found many cases of spatial and temporal assortative mating. 
This assortative mating based on temporal (May, 2022) or spatial (Lin 
et al.,  2017; Peterson et al.,  2014) variation in spawning behavior 
suggests that assortative mating in space and time can have positive 
effects on fitness and population productivity (May, 2022).

Models exploring dynamic processes of assortative mating or 
substructure within populations have generated a number of ex-
pected demographic or evolutionary outcomes. For example, mod-
els have shown that unstructured populations may have a lower 
overall fitness and recruitment compared to highly structured 
populations (Nahum et al.,  2015). Assortative mating may also 

affect genetic variation and the magnitude and direction of selec-
tion regimes, although these effects may vary depending on the 
trait in question, selective regime, and mechanism for assortative 
mating (Bolnick et al., 2009; Bolnick & Kirkpatrick, 2012; Sørdalen 
et al.,  2018). Generally, assortative mating can be expected to in-
crease genetic variance among groups (by allowing for genetic 
divergence via reduced gene flow) while decreasing genetic varia-
tion within groups (by limiting the introduction of new alleles and 
increasing the homogenizing effects of inbreeding and drift; Crow 
& Felsenstein,  1968). Subsequently, assortative mating may result 
in faster responses to selection, due to an overall increase in the 
magnitude of selection within groups and increased genetic variance 
available to selection among groups (McBride & Robertson, 1963). 
Compared to a randomly mating system, assortative mating is ex-
pected to result in greater population variance in reproductive fit-
ness (and lower effective population size), because mating pairs 
closer to local fitness optima should have more offspring than sub-
optimal pairs (Devaux & Lande,  2008). Greater phenotypic or ge-
netic diversity associated with assortative mating may consequently 
increase population stability and resilience (i.e., through portfolio 
effects; Schindler et al., 2010). The role of assortative mating in fa-
cilitating speciation has also been extensively studied (Dieckmann 
& Doebeli, 1999; Jiang et al., 2013; Kopp et al., 2018). However, the 
extent to which such fine-scale processes may impact recruitment 
or resilience within populations has yet to be fully investigated in 
wild populations.

Models built on eco-evolutionary principles offer a way to ex-
amine the relative influence of evolutionary processes within meta-
populations on recruitment (Palkovacs & Hendry,  2010). Example 
applications include studies that have investigated impacts of 
dispersal between subpopulations on local adaptation and pop-
ulation robustness (e.g., Lin et al.,  2017; Yeakel et al.,  2018), ex-
amined effects of harvest on evolution of size or age (Bromaghin 
et al., 2011; Eldridge et al., 2010), detected the effects of harvest se-
lection on dispersal (Moland et al., 2019) or mate selection (Sørdalen 
et al., 2018), and studies exploring evolutionary responses to climate 
change (Reed et al., 2011). A major assumption of many such mod-
els is that mating occurs randomly within populations (Bürger, 1999; 
Gomulkiewicz & Holt, 1995; Kopp & Matuszewski, 2014; Lande & 
Shannon, 1996), which may bias the interpretation of model outputs 
if mating systems are assortative in study populations (Godineau 
et al.,  2022; Rios Moura et al.,  2021; Rolán-Alvarez et al.,  2015). 
For example, unaccounted assortative mating may inflate quantita-
tive estimates of additive genetic variance in traits of interest and 
result in a failure to detect other sources of variation, such as ge-
netic dominance or environmental effects (Vinkhuyzen et al., 2012). 
Indeed, many empirical studies under-estimate or fail to detect the 
extent of assortative mating due to incomplete sampling or pooling 
of data which represent spatially or temporally heterogeneous trait 
distributions (Rios Moura et al.,  2021; Rolán-Alvarez et al.,  2015). 
Furthermore, most quantitative genetic models investigating the 
effects of assortative mating on evolutionary processes (i.e., the ef-
fects of selection or gene flow on genetic variation) assume constant 
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or infinite population sizes, and therefore do not incorporate the ef-
fects of demography (i.e., changes in population size or density) on 
evolutionary outcomes (Devaux & Lande, 2008; Felsenstein, 1981; 
Fisher, 1918; Godineau et al., 2022; Wright, 1921). Recent evidence 
has shown how demography, which is often directly influenced by 
anthropogenic perturbations, can have important feedback effects 
on selective regimes and evolution (Govaert et al., 2019). Thus, an 
eco-evolutionary modeling framework that incorporates both assor-
tative mating and demographic dynamics in spatially or temporally 
heterogeneous populations would facilitate a greater theoretical 
understanding of anthropogenic effects on wild population dynam-
ics such as recruitment, demographic changes, or the evolution of 
fitness-linked traits. Here, we aim to develop such a model.

Previous work has illustrated relationships between genetic or 
ecological variation and demographic or evolutionary outcomes. 
Results from similar simulation models are useful for forming hy-
potheses about the expected behavior of our model. For example, 
models investigating additive genetic correlations between fitness-
linked traits have shown how genetic correlations can affect the di-
rection and magnitude of evolutionary responses, possibly limiting 
the evolution of negatively genetically correlated traits to fitness 
peaks and reducing population mean fitness as a result (Duputié 
et al., 2012; Etterson & Shaw, 2001; Via & Lande, 1985). Such an-
tagonistic correlations are particularly common in cases of genet-
ically correlated traits under variable sexual selection (Connallon 
& Hall,  2016). Recent simulation efforts have also examined how 
shifts in phenotypic optima over time or increases in environmen-
tal variability (i.e., due to climate change) can cause a lag between 
population mean phenotypes and fitness optima (Cotto et al., 2019; 
Godineau et al., 2022; Reed et al., 2011). These studies have demon-
strated how increased environmental variation can lead to reduc-
tions in mean fitness and subsequent demographic declines, with 
possible eco-evolutionary feedbacks to adaptive processes (Cotto 
et al.,  2019). Such dynamics can be further complicated by varia-
tion in the direction or magnitude of local selection regimes, which 
are typically modeled as Gaussian stabilizing selection curves that 
vary among generations. For example, populations exposed to the 
combined effects of both fluctuating ecological optima and inten-
sifying selection may experience a larger lag (i.e., lag load) between 
population mean phenotypes and ecological optima than with either 
dynamic alone (Hellmann & Pineda-Krch,  2007), and dramatic de-
mographic declines may follow (Bürger & Krall, 2004). Examination 
of these types of combined effects can be particularly difficult to 
parse apart in empirical studies but are amenable to study through 
simulation-based models. Thus, it is prudent to incorporate dynam-
ics such as genetic correlations, environmental variability, and vari-
able selection intensity in quantitative genetic models seeking to 
comprehensively examine population dynamics.

The objectives of our paper are to first develop a modular and 
flexible framework for simulating the demographic and evolutionary 
impacts of different mating types (assortative or random) in variable 
environments and under variable strengths of multivariate selection, 
and second to conduct a sensitivity analysis of the relative effects of 

each input parameter on evolutionary and demographic outcomes 
(i.e., ensuring that model behavior follows established theory). 
Parameters in this model could be informed by empirical observa-
tions or drawn from the literature. This model might then be used in 
a management setting to understand the consequences of changes 
in parameters for future recruitment, population growth rate, and 
trait evolution. We next demonstrate the utility of this model across 
a series of four in silico experiments, focusing on the trait of repro-
ductive phenology within a typical salmonid life history pattern. 
Pacific salmon are characterized by an anadromous, semelparous 
life-history in which adult salmon return from a period of ocean res-
idence to spawn for a brief period in their natal streams and then die 
(Quinn, 2018). This life history means that a single breeding event 
represents an individual's total contribution to the next generation, 
so mate availability and reproductive timing are of particular impor-
tance to recruitment in salmon populations. Empirically, the time 
period and duration of return to freshwater spawning grounds (‘run 
timing’) varies among and within species and populations and has 
been shown to be adaptive to the environmental conditions in spe-
cific rivers (reviewed by Quinn, 2018; Waples et al., 2022). A natural 
consequence of variation in run timing within a population, when 
combined with a short duration of reproductive behavior, is some 
degree of positive assortative mating on return time. Gaining a bet-
ter understanding of how such assortative mating on return time in-
fluences population viability and productivity is therefore clearly of 
interest to conservation and fishery management of salmon (Waples 
et al., 2022). To help fill this need, we evaluate how sensitivity anal-
yses of (1) assortative mating, (2) correlation between multiple tem-
porally based fitness-linked traits, (3) environmental variation, and 
(4) the strength of selection affect changes in population size (cen-
sus, effective) and trait evolution. All code and data are provided in 
our publicly available Github repository linked here: https://github.
com/SMay1/​Assor​tative_Mating_QG_IBM

2  |  METHODS

2.1  |  Model overview and assumptions

We designed an individual-based modeling framework capable of 
predicting trait values (i.e., phenotypes) and fitness for all individuals 
in a population over short, contemporary evolution timescales (i.e., 
generation over generation). While our focus is on parameters rele-
vant for salmonids, this framework is general and can be extended to 
other species. For example, fitness was quantified as individual life-
time reproductive success: the number of adult offspring produced 
by each adult individual, and the size of the subsequent generation 
was assumed to be the sum of these realizations of reproductive 
success across individuals. However, the fitness module could easily 
be extended to incorporate fecundity, survival, or growth (as in Lin 
et al., 2017), if different fitness metrics are desired for other study 
systems. We also assumed selection acted on traits with constant 
phenotypic and additive genetic variances to predict individual 
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fitness values, although, phenotypic variance could be made to vary 
in future applications. Offspring were assigned trait values, follow-
ing quantitative genetic theory for deterministic inheritance (i.e., 
alleles were not modeled; Roff, 2012). At each time step, trait and fit-
ness values for individuals within generations were used to quantify 
population-level summary statistics such as census population size 
(Nc), effective population size (Ne), and the mean and variance of 
phenotypic traits; although, additional summary statistics may also 
be estimated, such as the per-capita population growth rate (λ) or 
geometric mean fitness.

To demonstrate the utility of this type of mechanistic model 
for visualizing and predicting changes to vital population param-
eters, we utilized a range of known input parameter values and 
population dynamics from pedigreed populations of anadro-
mous, semelparous salmonids (Lin et al., 2017; May, 2022; Quinn 
et al.,  2007). Specifically, we explored two phenological traits of 
interest: return day and reproductive lifespan (RLS). Return day 
was defined as the calendar day of the spawning season individuals 
returned to spawn. RLS was defined as the number of days individ-
uals survived on the spawning grounds after arrival. Return timing 
and RLS are important traits in salmonid populations, as they are 
closely linked to fitness (Evans et al., 2019; Koch & Narum, 2021; 
Lin et al., 2016). Selection typically acts strongly on salmonid phe-
nological traits, as fitness is closely linked to seasonal ecological 
dynamics (i.e., egg incubation temperatures and food availability 
for emerging fry), and there is a high potential for phenotype-
environment mismatch if fitness is closely tied to environmental 
conditions at the time of stream entry (Evans et al., 2019). Longer 
RLS values are associated with greater reproductive opportunity 
and ultimate reproductive success; although there likely exists an 
energetic tradeoff associated with gamete production, mating op-
portunity, defense against redd superimposition, and predation risk 
(Hendry et al., 2004; Lin et al., 2016). These two traits determine 
possible mating pairs within populations, as two fish may only mate 
if they are on the spawning grounds at the same time. In addition, 
return day and RLS have been shown to be inversely correlated, 
both phenotypically and genetically, in many salmon populations, 
where early returning fish tend to have longer RLS than late returns 
(Hendry et al., 2004; Lin et al., 2016; McMahon, 2021). Significant 
heritability values have been attributed to both traits (Carlson & 
Seamons,  2008; Lin et al.,  2016). We describe our model in the 
context of these population dynamics, where within each gener-
ation: (1) individuals return to spawning grounds on a specific day 
and are able to mate for a specific number of days, depending on 
their reproductive lifespan (reproduction); (2) each mating pair is 
assigned a number of offspring, depending on the deviance of their 
trait values from optimal return timing and RLS values (selection); 
and (3) individual offspring inherit trait values from their parents, 
deviating according to a constant phenotypic trait variance and co-
variance in the population. Subsequently, offspring become repro-
ductive adults in the following generation, and ecological optima 
vary according to a predefined intergenerational environmental 
variance.

To simplify model mechanics and to focus on parameters of inter-
est, we simplified some aspects of salmonid life history. Specifically, 
we assumed discrete generations, which is not typical for most sal-
monid species, where age-at-maturity can vary (Quinn, 2018). We 
also assumed a constant and equal adult sex ratio of 1:1, which 
can in fact vary in natural populations (Brykov et al., 2008; Quinn 
et al., 1996). The duration of the spawning season (in days) was held 
constant over time, whereas in natural populations the length of the 
spawning season may vary among generations (although generally 
consistent within a given population). Similarly, the phenotypic vari-
ance and covariance between quantitative traits was held constant 
over generations, which is a common assumption of quantitative ge-
netic models when population sizes are sufficiently large, selection 
is sufficiently weak, or evolutionary timescales are relatively short 
(Roff & Mousseau, 2005). We also assume that our simulated popu-
lations were not affected by additional intrinsic or extrinsic factors, 
including carrying capacity, density regulation, predation or fisheries 
harvest, dispersal, nor inbreeding depression, which can be import-
ant regulatory dynamics in real populations (Koch & Narum, 2021). 
Males and females in our model were assumed to mate at the same 
frequency; however, mating frequency can differ substantially be-
tween male and female salmon depending on population-specific sex 
ratios and species-specific mating behavior (Bentzen et al.,  2001). 
Similarly, males are known to return to streams earlier than females 
in many salmon species, yet our model assumes no difference in re-
turn timing between the sexes. Lastly, we assume that the quantita-
tive traits examined here are controlled by many loci of small effects 
(infinitesimal model). Some recent studies have shown how a large 
proportion of phenotypic variation in run timing is influenced by a 
gene-region of large effect in some salmon species, along with ad-
ditional loci of smaller effect (reviewed by Waples et al., 2022). We 
describe our model and frame our conclusions from our experiments 
with these assumptions in mind.

2.2  |  Model initialization

We assumed that the duration of the spawning season for our 
model was a 30-day window, during which time individuals re-
turned to spawning streams to mate and reproduce. This length 
of spawning season is similar to many small stream-spawning 
populations of Pacific salmon (Lin et al., 2016; Quinn et al., 2007), 
but may not encompass some cases of very early ‘premature’ mi-
gration seen in some salmon species (Quinn et al., 2016; Waples 
et al., 2022). To initialize the first generation (F0) of individuals and 
their trait values, the following values were input as initial model 
parameters (values provided in Table 1): an initial population size 
(Ncinitial), population means for return day and RLS (μ), population 
variance in these traits (σ2), and a correlation coefficient between 
traits (ρ). Values for the phenotypic variance–covariance matrix of 
trait values (P) were quantified from σ2 and ρ. Individuals were ran-
domly assigned as either males or females, with equal probability. 
Phenotypic traits (return day, RLS) for each individual were drawn 
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from a truncated bivariate normal distribution, where the values 
of each trait ranged from 1–30 days. To ensure RLS values did not 
exceed the 30-day spawning season, RLS values were conditioned 
on return day such that RLS could not be greater than the differ-
ence between the length of the spawning season and the day of an 
individual's return. Future applications of this framework to other 
traits of interest may choose not to apply a truncated distribution, 
which should generate similar results if phenotypic variances are 
sufficiently small or selection is sufficiently strong. Number of 
generations was also set an initial input parameter; all simulations 
included in this study were set to iterate for 10 generations, as all 
chosen input parameters (provided in Table 1) and model assump-
tions (e.g., constant phenotypic variance and deterministic inherit-
ance) resulted in rapid evolution of traits to equilibria and clearly 
apparent trends in population growth.

2.3  |  Fitness estimation module

Stabilizing selection was applied to potential parents to generate ex-
pected fitness values from individual traits, using methods adapted 
from Lin et al. (2017). Expected fitness estimation selected against 
individuals with trait values that deviated from population optima for 
return timing and RLS. Individuals were assigned an expected fitness 
weight using the following equation (adapted from Lande, 1979; see 
also Lin et al., 2017):

where y is a scaling factor that scales individual fitness weights, W(z), 
to a minimum of zero and a maximum of one; z is a vector of individual 

(1)W(z) = exp

{

−
1

2y
(z−�)

T
�

−1
(z − �)

}

TA B L E  1  Symbols and descriptions used in the text to describe model parameters.

Category Parameter Values used Description

Input parameters Ncinitial 500 Census population size of founder generation (F0)

μReturn Day 10 Initial population mean day of return to spawning grounds

μRLS 5 Initial population mean reproductive lifespan after returning to spawn

σ2
Return Day 10, 20, 30 Population phenotypic variance in return day

σ2
RLS 20 Population phenotypic variance in reproductive lifespan

⍴ −0.6, −0.3, 0 Phenotypic correlation between return day and reproductive lifespan; 
ranges from −1 to 1

ω 1, 2, 3 Strength of selection (1/ω), measured as a scalar: the number of 
phenotypic standard deviations in a stabilizing selection curve

σ2
θ Return Day 10, 20, 30 Interannual environmental variance in optimal return day

σ2
θ RLS 1 Interannual environmental variance in optimal reproductive lifespan

‼

�
[μReturn Day, μRLS] A vector of mean phenotypic optima

Internal parameters θReturn Day μReturn Day +/− σ2
Return Day Phenotypic optimum for return day within a given generation

θRLS μRLS +/− σ2
RLS Phenotypic optimum for RLS within a given generation

P G + R P, G, and R represent the phenotypic, additive genetic, and residual (i.e., 
environmental) variance–covariance matrices, respectively. They are 
all assumed constant, and P is estimated directly from μ, σ2, and ⍴

θ [θReturn Day, θRLS] A vector comprising θReturn Day and θRLS within a given generation

W(z) Equation 1 Expected fitness weight from trait values alone; ranges from zero to one

RSexp qpois(W(z)) Expected lifetime reproductive success from trait values alone, drawn 
from a Poisson distribution with λ = 2 and a probability weight = W(z)

Wi,j Equation 2 The weight of male i and female j being assigned offspring from a pool 
of potential offspring, determined from the product of their relative 
RSexp values and whether they overlapped in time [1] or not [0]

RSobs ∑offspring i,j The observed number of offspring assigned to each individual or mated 
pair

Output parameters Nc Census population size of a cohort

Ne Inbreeding effective population size of a cohort (as in Waples & 
Waples, 2011)

‼

Return Day
Mean return day within a cohort

‼

RLS
Mean reproductive lifespan within a cohort

Note: All values used for input parameters in the main text are provided, in addition to shorthand equations for how internal parameters were 
quantified.
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trait values; θ is a vector of trait optima (θRLS and θReturn Day); and ω is a 
matrix describing the shape of the fitness landscape (Lin et al., 2017). 
This multivariate model is equivalent to a bivariate Gaussian distribu-
tion with mean θ and covariance matrix ω. The off-diagonal elements 
of ω (which are identical) represent the correlation between entry day 
and reproductive lifespan, and the diagonal elements represent the 
magnitudes of variation for each of these traits; together these pa-
rameters control the shape of the fitness landscape. We assumed that 
the strength of stabilizing selection was equal for the two traits and 
constant across generations. To simulate interannual variation in local 
selection regimes, trait optima were allowed to vary each generation 
according to a Gaussian distribution with a mean equal to the initial 
phenotypic means and a variance vector σ2

θ, comprising σ2
θ RLS and 

σ2
θ Return Day set as an initial input parameter.

Next, we quantified individual expected reproductive success 
values (RSexp), defined as the expected number of offspring per adult 
breeder, according to only their phenotypic trait values for return 
day and RLS. To quantify RSexp, individual fitness weights (W(z)) were 
used as probabilities to draw from a Poisson distribution with λ = 2, 
representing a stable population.

2.4  |  Reproduction module

The census size of the next generation was determined by summing 
the RSexp values for all females in the population, as male salmon 
are able to spawn with multiple females and are therefore gener-
ally not considered to limit reproduction. Individuals from this pool 
of offspring were assigned a dam and sire in the parental genera-
tion. Assortative mating for return timing was incorporated into 
this model through a weighted draw of offspring for possible parent 
pairs, using adapted methods from TheWeight (Waples, 2022):

where the weight (Wi,j) of male i and female j being assigned a given 
offspring from the pool of potential offspring was determined by the 
product of three probabilities: (1) the relative fitness of male i 
(Wmi =

RSexp i

RSexp
), (2) the relative fitness of female j (Wfj =

RSexp j

RSexp
), and (3) an 

overlap weight (Wo i,j =
[

1, 0
]

). The overlap weight was a binomial 
probability, where if male i and female j were present in the stream 
at the same time during the spawning season (overlapped) the pair 
was given an overlap weight of one. If male i and female j did not 
overlap, the pair were given an overlap weight of zero, resulting in an 
overall probability equal to zero that pair i,j were assigned offspring 
(Wi,j = 0). Thus, the mechanisms by which assortative mating acted 
here was through both mate choice and selection, where mate 
choice was defined as the opportunity to mate only between indi-
viduals on the spawning grounds at the same time. Overlap weights 
did not give higher probability of mating to pairs who overlapped for 
many days, relative to pairs who only overlapped for a short while; 

however, this dynamic may be incorporated in future model 
applications.

To model random mating, Wo i,j was set equal to one, such that 
all possible mating pair combinations of male i and female j had an 
equal probability of mating, and mate availability was not causing 
assortative mating. However, assortative mating still acted to some 
extent via selection, because Wmi × Wfj caused mating pairs close 
to the optimum to be assigned more offspring than sub-optimal 
pairs. Retaining Wmi × Wfj while setting Wo i,j equal to one provided 
a mechanism that allowed for evolution under random mating with 
no assortative mating due to mate choice. In contrast, some quan-
titative genetic models allow for selection without explicitly model-
ing mate choice (e.g., Ford, 2002). Future applications of this model 
may consider modifying Equation 2 to allow or disallow for different 
mechanisms that result in assortative mating. For example, setting 
both Wmi and Wfj equal to one while retaining Wo i,j would remove as-
sortative mating via selection but allow assortative mating via mate 
choice. Alternatively, setting Wmi * Wfj and Wo i,j equal to one would 
provide a mechanism to examine a randomly mating system with no 
evolution. In this way, our framework allows flexibility to isolate spe-
cific mechanisms and alter the model to fit specific study systems.

The final number of offspring assigned to each parent defined 
that parent's observed reproductive success (RSobs), which was later 
used to quantify output parameters.

2.5  |  Inheritance module

Offspring were assigned trait values following established quantita-
tive genetic theory on deterministic inheritance of correlated traits 
(i.e., alleles were not explicitly modeled; Roff,  2012). Phenotypic 
variation in a trait (X) is equal to the sum of its genetic (G) and envi-
ronmental (E) components of variation. Thus, to simulate inheritance 
of a univariate trait, an offspring's trait value may be drawn from 
a Gaussian distribution with a mean equal to the mid-parent value 
and a variance equal to the phenotypic variance in the population 
(X = G + E). Incorporating correlations between multiple traits, this 
concept may be extended: the phenotypic covariance matrix (P) is 
equal to the sum of the genetic covariance matrix (G) and a covari-
ance matrix of residual deviation (R). Thus, for our correlated traits of 
return day and RLS, we simulated trait values for individual offspring 
from a truncated bivariate normal distribution. The means of this 
distribution were equal to the mid-parent values of the two traits, 
and the multivariate variance and covariance of the two traits were 
obtained from the phenotypic covariance matrix (P = G + R), an initial 
input parameter where P, G, and R were assumed constant across 
generations (Figure 1, Experiment 1). As in the initialization of traits 
for the F0 generation, individual values for RLS were conditional on 
individual values of return day, such that RLS could not be greater 
than the length of the spawning season minus the return day. This 
prevented individuals from surviving and breeding past the last day 
of the spawning season. Once offspring were assigned traits, they 

(2)Wi,j = Wmi ×Wfj ×Wo i,j =
RSexp i

RSexp

×
RSexp j

RSexp

×
[

1, 0
]
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became the parents of the next generation, and the model repeated 
for a set number of generations.

2.6  |  Model outputs

Model outputs comprised a full pedigree (animal, dam, sire), trait val-
ues, and RSobs values for each individual in the population. These data 
were then used to quantify population statistics within generations. 
Here, we estimated the mean and variance of trait values, census 
population size (Nc), and effective population size (Ne); however, many 
other output parameters could be estimated (i.e., population growth 
rate or operational sex ratios). Effective population size was quantified 

as the ‘inbreeding effective size’ following the methods of Waples and 
Waples (2011), which incorporates the population mean and variance 
in reproductive success. We computed a mean and 95% confidence 
interval from replicated simulations for each model output, within gen-
erations. By varying input parameters or changing model dynamics, 
changes in these population statistics may be directly observed.

2.7  |  Sensitivity analyses

To validate that model outputs conformed to expected theoretical out-
comes for multivariate selection on correlated traits, we varied model 
input parameters to address four eco-evolutionary questions. Each 

F I G U R E  1  Schematic of model workflow (top) and visualization of univariate parameter space in four simulation experiments (bottom). 
Experiment 1 (blue) shows how increasing phenotypic variance in return day (σ2

Return Day) increases the likelihood that an offspring's trait 
value will deviate from their mid-parent value (dashed gray line). Experiment 2 (orange) shows the phenotypic relationship between return 
day and reproductive lifespan under different phenotypic correlations (⍴). Experiment 3 (green) shows how the optimal return day (θReturn Day) 
for a given cohort is more likely to deviate from the mean (θReturn Day) when variance (σ2

θ Return Day) is high. Experiment 4 (purple) gives 
expected fitness values associated with return day, for three different strengths of selection regime (ω, quantified using Equation 1).
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unique combination of input parameters was considered a simulation, 
which were each projected for 10 generations. For most parameter 
combinations, the first 3–4 generations of a particular iteration rep-
resented a ‘burn-in’ period. To capture variation in model outputs for 
each set of input parameters, we performed 100 iterations per simu-
lation (e.g., initializing and projecting 100 populations). If the popula-
tion size in a given simulation dropped below 50, we considered that 
population functionally extinct. An assortative mating system was as-
sumed, except in Experiment 1 where assortative and random mating 
systems were compared. For all simulations in this study the follow-
ing input parameters were held constant at Ncinitial = 500 individuals, 
μReturn Day = 10 days, μRLS = 5 days, σ2

RLS = 20 days, and σ2
θ RLS = 1 (See 

Table 1 for parameter definitions). We iteratively varied each of the fol-
lowing input parameters, which were otherwise held constant at inter-
mediate values of σ2

Return Day = 20 days, ρ = −0.3, σ2
θ Return Day = 20 days, 

and ω = 2 phenotypic standard deviations.

2.7.1  |  Experiment 1: Assortative mating

The effects of temporal assortative mating on population dynamics 
were examined by varying phenotypic variance in return day across 
3 levels (10, 20 and 30 days) to represent strong, moderate, and weak 
assortative mating (Figure 1, Experiment 1). Conceptually, variance 
in return day affects assortative mating through its relationship 
with heritability: lower variance increases the probability that indi-
viduals will return closer to when their parents returned (i.e., greater 
heritability of return day). In turn, greater heritability increases the 
mating probability among individuals with similar trait values (i.e., as-
sortative mating). However, phenotypic variance also affects fitness: 
greater phenotypic variance is expected to result in greater RSexp for 
a given trait value, because the strength of selection is quantified 
in phenotypic standard deviations (Equation 1). We expand on this 
phenomenon in the Figure S1 and interpret results of this simula-
tion with these dynamics in mind. Within this framework, we also 
compared simulations with assortative mating (detailed in the repro-
duction module) to random mating where dam-sire-offspring triads 
were assigned randomly (Wi,j = 1 for all putative pairs).

2.7.2  |  Experiment 2: Trait correlation

The effect of correlation between traits on population dynamics 
was examined by varying the magnitude of phenotypic correlation 
(ρ) between return day and RLS (values of −0.6, −0.3, and 0 to rep-
resent strong, moderate, and weak/no correlation between traits; 
Figure  1, Experiment 2). A negative correlation between return 
timing and RLS has been consistently reported in Pacific salmon 
populations, suggesting that early returning individuals tend to live 
longer on spawning grounds than later returning individuals (Doctor 
& Quinn,  2009; Lin et al.,  2016; McMahon,  2021). Doctor and 
Quinn  (2009) suggested that these correlations may indicate evi-
dence for adaptive differentiation associated with temporal isolation 

(i.e., adaptation-by-time; Hendry & Day, 2005). Lin et al. (2016) re-
ported significant heritability values, phenotypic correlations, and 
genetic correlations between RLS and return day, indicating that 
these traits are likely co-inherited. The correlation values used here 
(0 to −0.6) approximately represent the range of published correla-
tion values for these two traits (−0.3 to −0.5). We additionally ex-
plored the effect of positive correlations on simulation outputs in 
the Figure S2, although we note that positive correlations between 
RLS and return timing are not biologically relevant in semelparous 
salmonid populations.

2.7.3  |  Experiment 3: Environmental variability

We examined the effect of environmental variability on demography 
by adjusting the magnitude of interannual variation in ecological trait 
optima (σ2

θ). Separate simulations were run for σ2
θ Return Day values of 

10, 20, and 30 days to represent temporally stable, slightly variable, 
and extremely variable local selection regimes (Figure 1, Experiment 
3). In effect, we examined population responses to fluctuating se-
lection associated with increased environmental variability, one key 
prediction of climate change studies. Varying σ2

θ RLS should result in 
identical fitness outcomes as σ2

θ Return Day, but the fitness effects of 
simultaneous movement of both optima may prove difficult to in-
terpret. Therefore, we chose to isolate the effects of σ2

θ Return Day 
by holding σ2

θ RLS constant at a value of 1, representing extremely 
low variation in optimal RLS. This approach is similar to many evo-
lutionary models used to predict evolutionary responses to climate 
change scenarios (Bürger, 1999; Gomulkiewicz & Holt, 1995; Kopp 
& Matuszewski, 2014; Lande & Shannon, 1996). Some such models 
quantify specific environmental variables separately (i.e., tempera-
ture, flow; Reed et al., 2011). Here, we instead consider all sources 
of inter-annual environmental variability contributing to return tim-
ing selection regimes as a single variable. We also note that future 
model applications to climate change scenarios may also consider 
inducing a trend in the mean trait optima (�), which is likely to co-
occur with increased environmental variation. An example simula-
tion where variance in phenotypic optima is null is provided in the 
Figure S3.

2.7.4  |  Experiment 4: Strength of selection

The effect of the strength of selection on population dynamics 
was examined by varying the diagonal elements of ω (Equation 1). 
Conceptually, the diagonal elements of ω correspond to the number 
of phenotypic standard deviations in the stabilizing selection curve 
for each trait (Hard,  2004). The strength of selection on the two 
traits, typically expressed as 1/ω, was assumed equal. We adapted 
the methods of Hard (2004) by examining selection intensities rang-
ing from very strong (1 standard deviation) to weak (3 standard 
deviations; Figure  1, Experiment 4), according to previously pub-
lished estimates (Guillaume & Whitlock, 2007; Jones et al.,  2003; 
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Lin et al.,  2017). Hard  (2004) notes that empirical evidence indi-
cates that natural selection (stabilizing and directional) is generally 
weak in natural populations (3–4 standard deviations) but might 
be stronger (1–2 standard deviations) in harvested populations 
(Kingsolver et al., 2001). The shape of the stabilizing selection curve 
(ω) is related to the quadratic selection gradient (γ) approximately by 
γ = −1/ω2 (Arnold et al., 2001). Thus, the range of ω used here (1–3 
standard deviations) should encompass most moderate to strong 
selection scenarios reported by Kingsolver et al. (2001), particularly 
in harvested populations (Hard,  2004). Selection was modeled as 
stronger than in some natural populations to prevent exponential 
population growth, as no other regulatory dynamics acted in these 
scenarios (i.e., predation or density dependence); although, such 
regulatory dynamics may easily be incorporated in future model 
applications.

3  |  RESULTS

3.1  |  Experiment 1: Assortative mating

Demographic outcomes differed between simulations with assorta-
tive and random mating systems. In simulations with equal variance 
in return day (σ2

Return Day), assortative mating generally translated 
into larger population sizes than simulations with random mating. 
For example, in simulations where the variance in return day was 
intermediate (20 days), the mean population size with random mat-
ing was 348 individuals, 95% CI [294–402] after 10 generations, but 
under assortative mating this value was 813 individuals, 95% CI [689, 

937] (Figure  2a,b). From this result we concluded that assortative 
mating systems contributed to population growth, whereas random 
mating systems limited recruitment. We further examined the re-
lationship between σ2

Return Day and population size (Nc) and found 
a positive relationship under both random and assortative mating: 
greater phenotypic variance resulted in higher recruitment (see 
Figure S1 for additional details on the relationship between pheno-
typic variance and fitness). However, this relationship was approxi-
mately linear under random mating and nonlinear under assortative 
mating (Figure  2a,b; Figure  S4), as populations grew much faster 
with increasing σ2

Return Day under assortative mating than under ran-
dom mating.

Evolutionary outcomes also differed between scenarios with 
random and assortative mating. Under random mating, the effective 
population size of all scenarios was approximately equal to the cen-
sus size (Ne/Nc = 1; Figure 2c,d). This result was expected, as ran-
dom mating (the equal probability of adults to produce offspring) is a 
key attribute of the Wright-Fisher Idealized Population Model upon 
which Ne is contingent. Furthermore, the ratio between Ne and Nc 
under assortative mating was positively correlated with σ2

Return Day, 
corresponding to slightly larger Ne/Nc ratios when σ2

Return Day was 
high. Investigation of the evolution of return day and RLS revealed 
that the distribution of these traits depended greatly on pheno-
typic variance under random mating: σ2

Return Day was positively cor-
related with mean return day (Figure 2e,f) but negatively correlated 
with mean RLS (Figure 2g,h). On the other hand, trait evolution was 
mostly independent of phenotypic variation under assortative mat-
ing, although greater σ2

Return Day resulted in slightly higher mean re-
turn day (Figure S5).

F I G U R E  2  Demographic output 
parameters (y-axes) over 10 generations 
(x-axes) for three simulations with variable 
input parameter values for phenotypic 
variance in return day (σ2

Return Day; color 
shades). The mating system within 
simulations was either assortative (left) 
or random (right). Output parameters 
of interest (points), from top to bottom, 
were census population size (Nc), ratio 
of effective to census population size 
(Nc/Ne), mean return day, and mean 
reproductive lifespan. Output parameters 
were estimated as the mean of 100 
model iterations and are bounded by 95% 
confidence intervals.
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3.2  |  Experiment 2: Trait correlations

We investigated how the magnitude of negative phenotypic cor-
relation (⍴) between return timing and RLS affected demography 
and evolution (simulations with positive correlations are reported in 
Figure S2). In simulations with no correlation between traits, popula-
tion sizes grew in 10 generations from 500 to 1514 individuals, 95% 
CI [1313, 1715]; however, in simulations with higher degrees of cor-
relation between traits (i.e., −0.6), population sizes declined from 
500 to 256 individuals, 95% CI [207, 305] over the same time period 
(Figure 3a). From this result, we concluded that greater correlation 
magnitudes (i.e., more negative correlations) between traits resulted 
in reduced population growth. Examination of the effect of ⍴ on Ne/
Nc ratio showed that when traits were uncorrelated, Ne/Nc was 
higher (0.66, 95% CI [0.65–0.67] after 10 generations) than when 
traits were highly negatively correlated (0.56, 95% CI [0.54, 0.58] 
after 10 generations; Figure  3d). The relationship between ⍴ and 
Ne/Nc also appeared non-linear, with a large difference in Ne/Nc 

between ⍴ values of −0.3 and −0.6, and a small difference in Ne/Nc 
between ⍴ values of 0 and −0.3. There was no difference between 
mean return day values in simulations with different ⍴ (Figure 3g), 
indicating no relationship between ⍴ and the evolution of return day. 
However, simulations with a high degree of correlation (i.e., ⍴ = −0.6) 
resulted in the evolution of a longer average RLS (after 10 genera-
tions, mean RLS = 7.83 days, 95% CI [7.95, 7.71]) compared to simu-
lations with no correlation between traits (7.27 days, 95% CI [7.20, 
7.34]; Figure 3j).

3.3  |  Experiment 3: Interannual environmental 
variability

We next investigated how variation in interannual ecological op-
tima affected population dynamics. In simulations where the 
optimal return day was allowed to vary greatly between years 
(σ2

θ Return Day = 30) population sizes grew only slightly from 500 to 

F I G U R E  3  Demographic output parameters (y-axes) over 10 generations (x-axes) for three simulation experiments (colors). Each 
experiment consisted of three variations of a single input parameter (shades), while all other parameters were constant under an assortative 
mating system. The input parameters of interest were phenotypic correlation between return day and reproductive lifespan (⍴; oranges), 
variance in optimum return day (σ2

θ Return Day; greens), and strength of selection regime (ω; purples). Output parameters of interest (points), 
from top to bottom, were census population size (Nc), ratio of effective to census population size (Nc/Ne), mean return day, and mean 
reproductive lifespan. Output parameters were estimated as the mean of 100 model iterations and are bounded by 95% confidence 
intervals. Comparisons within the 10th generation are provided in the supplemental materials (Figure S4).
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590 individuals 95% CI, [495, 685] in 10 generations; whereas in 
simulations with low σ2

θ Return Day (i.e., 10) population sizes grew to 
1788 individuals, 95% CI [1622, 1954] (Figure 3b). This result demon-
strated a negative relationship between σ2

θ Return Day and population 
growth rate. In addition, this relationship was non-linear, as the dif-
ference in Nc between simulations with σ2

θ Return Day values of 10 and 
20 was much greater than the difference between simulations with 
σ2

θ Return Day values of 20 and 30.
The effect of environmental variability on evolutionary dynamics 

was more subtle. Simulations with more stable interannual environ-
mental regimes (σ2

θ Return Day  =  10) resulted in only slightly higher 
Ne/Nc ratios (i.e., 0.65, 95% CI [0.64, 0.66] after 10 generations) 
than simulations with more variable environments (i.e., 0.59, 95% CI, 
[0.57, 0.61] after 10 generations when σ2

θ Return Day = 30; Figure 3e). 
Furthermore, more variable simulations saw the evolution of margin-
ally later mean return days (10.94 days, 95% CI [10.49, 11.39] when 
σ2

θ Return Day = 30 compared to 10.18 days, 95% CI [9.87, 10.49] when 
σ2

θ Return Day = 10; Figure 3h). Yet no relationship was found between 
σ2

θ Return Day and the evolution of mean RLS (Figure 3k).

3.4  |  Experiment 4: Strength of selection

We lastly examined the relationship between population dynam-
ics and the intensity of stabilizing selection on return timing (1/ω). 
Simulations with weak selection regimes (ω  =  3) had populations 
which grew nearly 1000% within 10 generations (500 to 4528 indi-
viduals, 95% CI [4041, 5015]), whereas simulations with strong se-
lection regimes (ω = 1) showed populations which declined to near 
extinction (mean Nc = 79, 95% CI [55, 103]) (Figure 3c). Population 
sizes remained relatively stable in simulations with moderate selec-
tion regimes (ω = 2), growing from 500 to 866 individuals, 95% CI 
[750, 982] in 10 generations. From these results we concluded that 
ω had a strong positive correlation with Nc. Selection intensity also 
had a strong effect on Ne/Nc ratio: simulations with weak selection 
had greater Ne/Nc ratios (0.71, 95% CI [0.70, 00.72] after 10 genera-
tions when ω = 3; 0.46, 95% CI [0.39, 0.53] when ω = 1; Figure 3f). 
This result indicated a strong positive relationship between ω and 
Ne/Nc. No relationship was observed between ω and the evolution 
of mean return day (Figure 3i). However, when selection was weak, 
populations evolved to have a longer average RLS (7.91 days, 95% CI 
[7.84, 7.98] when ω = 3; 6.85 days, 95% CI [6.61, 7.09] when ω = 1), 
indicating a positive correlation between ω and mean RLS (Figure 3l).

4  |  DISCUSSION

Here we introduced a modular framework for modeling population 
dynamics that incorporated eco-evolutionary principles and included 
temporally distributed assortative mating, closely resembling that of 
many aggregative breeders. The primary benefits of this framework, 
compared to other existing population dynamics models, are that it 
is both mechanistic and predictive, allowing for flexible hypothesis 

testing of proposed management scenarios. Specifically, the model 
can be parameterized with empirical values from specific study sys-
tems and used to predict demo-evolutionary outcomes of changes 
to input parameters. The utility and flexibility of this framework was 
demonstrated through a series of simulation experiments to exam-
ine the effects of four common population dynamics on demogra-
phy and evolution in simulated salmonid populations: (1) temporal 
assortative mating dynamics, (2) correlation between fitness-linked 
traits, (3) interannual environmental variability, and (4) strength of 
selection. We found that temporal assortative mating had an overall 
positive effect on population growth. Unexpectedly, the phenotypic 
variance in return day – which was used as a proxy for the magnitude 
of assortative mating regime – also had a positive relationship with 
population growth. We further found that increasing the magnitude 
of trait correlations, environmental variability, and strength of se-
lection all had negative effects on population growth. These find-
ings demonstrate how our model performs as expected for known 
population dynamics, while allowing mechanistic exploration of how 
proposed management strategies might affect demography and 
evolution in wild populations.

4.1  |  Explanation and implications of assortative 
mating simulations

We examined the effects of assortative mating on demography by 
either preventing or allowing matings to occur between pairs of 
individuals who were not present in the stream at the same time. 
The results demonstrated population growth under assortative mat-
ing but declines under random mating. Higher population growth 
under assortative mating can be explained by increased correla-
tion of breeding values between mates, a byproduct of correlated 
phenotypes between mates under assortative mating regimes 
(Felsenstein, 1981). As fitness in this model was the product of the 
expected fitness of dams and sires, mating pairs with high breeding 
values (i.e., individuals near the optimal trait value, θreturn day) resulted 
in higher mean fitness (i.e., population growth rate) than when popu-
lations mated randomly. Examined from a different perspective, ran-
dom mating also limited the response to selection, thus preventing 
adaptation to fitness optima and driving population declines. These 
results highlight the possible role of assortative mating in maintain-
ing population adaptive capacity and resilience. In the first experi-
ment, interannual environmental variation was held constant at an 
intermediate value, and mean return days evolved much closer to the 
mean optimal return day (θReturn Day) in populations with assortative 
mating than in populations under random mating. In other words, 
populations with assortative mating were able to better track a vari-
able fitness optimum (further demonstrated in Figures S3 and S5).

These results complement those in Godineau et al. (2022) who, 
using a polygenic model with similar eco-evolutionary parameters to 
our model, showed how assortative mating may increase adaptive 
capacity for plant flowering phenology. Unlike our model, the model 
in Godineau et al.  (2022) assumes a constant population size, and 



12  |    MAY et al.

they found no effect of assortative mating on adaptation to fluctu-
ating selection. However, the authors did find a positive effect of as-
sortative mating on adaptation to an environment with an increasing 
optimum over time, which we did not examine here. By contrast, in 
our model, the phenotypic variance was constant but the popula-
tion size was allowed to vary, and we found a positive effect of as-
sortative mating on adaptive capacity in response to environmental 
fluctuations with no trend. We thus conclude that there may be a 
twofold advantage of assortative mating on both genetic variance 
and demography in a changing environment (defined by both fluc-
tuations and a trend). Our results further confirm that phenological 
assortative mating dynamics are important to the adaptive capacity 
and resilience of populations.

Here, we varied the phenotypic variance in return day (σ2
Return Day), 

which had an inverse relationship with heritability and therefore an 
inverse relationship with the magnitude of assortative mating. We 
originally expected that higher heritability values would increase the 
magnitude of assortative mating, where increasing the correlation 
of breeding values between mates would result in higher population 
growth rates. Yet we observed the opposite trend: simulations with 
low phenotypic variance (i.e., high heritability and magnitude of as-
sortative mating) had reduced recruitment. Upon further examina-
tion, we attributed this result to the effect of phenotypic variance on 
selection, whereby increased phenotypic variance resulted in higher 
expected fitness values for a given trait value (this relationship is fur-
ther detailed in the Figures S1–S5). Increasing heritability did have a 
small effect on population genetic diversity, demonstrated by the 
Ne/Nc ratio: increasing σ2

Return Day (i.e., decreasing heritability and 
the strength of assortative mating) resulted in a slightly increased 
Ne/Nc ratio. In other words, populations with a weaker magnitude 
of assortative mating more closely resembled an idealized Wright-
Fisher population (randomly mating). In addition, because the Ne/
Nc ratio was lower under stronger assortative mating regimes, we 
concluded that genetic diversity is also likely lower when the mag-
nitude of assortative mating increases (i.e., lower σ2

Return Day), which 
confirms findings by Godineau et al.  (2022). However, the indirect 
effect of increased heritability on recruitment was substantially 
weaker than the direct effect of decreased phenotypic variation. 
This overall positive relationship between phenotypic variation and 
recruitment highlights the relative importance of phenotypic varia-
tion to recruitment and population growth in natural populations.

4.2  |  Trait correlations hinder evolution to 
fitness optima

Varying the negative correlation (⍴) between return day and RLS 
revealed a negative relationship between the magnitude of this cor-
relation and population growth. This relationship can be explained 
by the effect of ⍴ on the evolution of mean trait values. Return day 
evolved to a population mean close to θReturn Day (10 days) and was in-
dependent of ⍴. However, there was an effect of ⍴ on RLS. The mean 
optimal RLS (θRLS) was held constant at 5 days, but mean RLS did not 

evolve near this optimum across simulations. This result can be ex-
plained by an internal model mechanic within the inheritance module 
whereby return day is drawn before RLS from a univariate Gaussian 
distribution. Then, RLS is drawn from a second Gaussian distribution 
with a mean and variance conditional on the value drawn for return 
day. Therefore, return day is not conditional on RLS, but RLS is con-
ditional on return day, by the magnitude of ⍴. This mechanic resulted 
in the evolution of longer average RLS in simulations with greater 
correlation between traits (more negative ⍴), because the evolution 
of RLS was constrained by ⍴ such that the populations could not 
evolve to � when RLS and entry day were phenotypically correlated. 
This mechanic reduced mean fitness and population growth when 
correlations were greater. Notably, RLS was not able to evolve to its 
phenotypic optimum (even when uncorrelated; Figure S3), because 
the truncated distributions used to draw traits resulted in a shift in 
mean phenotype. Truncated distributions were biologically relevant 
for the phenotypes examined here, but future model applications 
should consider whether to apply truncated or true Gaussian distri-
butions when drawing trait values.

A fundamental assumption of this modeling framework is 
that stabilizing selection acts on a fitness landscape with a single 
Gaussian fitness peak. Although this is a common assumption in 
many similar eco-evolutionary models (i.e., Lin et al., 2017; Yeakel 
et al., 2018) and is consistent with many empirically observed pat-
terns of fitness-linked traits in anadromous salmonids (i.e., Lin 
et al.,  2016), Gaussian selection is not an accurate representation 
of selection in many natural populations (Huisman & Tufto,  2012; 
Laughlin,  2018). For example, negative correlations between RLS 
and return day in Sockeye salmon (Oncorhynchus nerka) may exhibit 
an adaptive tradeoff and therefore convey similar fitness benefits 
to early returning individuals with long RLS and later returning in-
dividuals with short RLS (Doctor & Quinn, 2009; Lin et al., 2016). 
Therefore, we recommend caution when imposing correlations on 
traits in future applications of this model, without applying an appro-
priately complex fitness landscape. Yet, expansion of the predictive 
framework outlined by Lande and Arnold  (1983) into multi-modal 
and multivariate fitness landscapes remains a challenge in applica-
tions of quantitative genetic theory.

4.3  |  Simulation outcomes for environmental 
variation and selection allow for empirical 
parameterization

A primary prediction of many climate change studies is that local 
environmental and ecological regimes will likely become more vari-
able. For example, in many parts of the northern hemisphere, inter-
annual temperature variation has increased by more than 25% since 
1980 (Huntingford et al., 2013). We examined the effects of such in-
creased environmental variability by shifting the fitness peak in our 
simulations after each generation, such that populations were con-
stantly chasing a moving optimum. Increasing the magnitude of in-
terannual variability hindered the evolution of traits to their optima, 
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which drove population declines when variability was very high and 
would have resulted in extinction if simulations were allowed to run 
for additional generations or were exposed to stronger selection re-
gimes. This result broadly agrees with established theory that shift-
ing environmental regimes can drive declines in population mean 
fitness (Bürger,  1999; Bürger & Lynch,  1995; Charlesworth,  1993; 
Kopp & Matuszewski, 2014; Lynch, 1991). This result demonstrates 
the utility of our model to examine the demographic and evolution-
ary consequences of environmental variability in specific empirical 
study systems (e.g., under climate change scenarios). When param-
eterized with empirically measured values, our framework may be 
applied to specific study systems to project future changes. For 
example in flowering plants, phenological traits such as flowering 
date and maturation timing of seeds have garnered recent atten-
tion in studies of how these traits will respond to climate change 
scenarios (i.e., Duputié et al., 2015; Gauzere et al., 2020; Godineau 
et al., 2022). These phenological traits are somewhat analogous to 
the salmonid traits of return timing and reproductive lifespan ex-
amined here, and we emphasize that our modeling framework may 
prove useful in diverse study systems.

Similarly, the result that weaker stabilizing selection resulted in 
increased population growth also conforms well to theoretical ex-
pectations (Lande, 1976). The strength of selection on various traits 
is a central quantifiable measurement that is reported in many stud-
ies of empirical, natural populations. As such, our model presents a 
mechanistic framework that allows for parameterization with empir-
ical measurements of selection magnitude and direction on diverse 
traits and in diverse taxa. However, as noted when discussing trait 
correlations, our model is somewhat limited by the assumption that 
selection acts on a single Gaussian fitness peak. For this model to be 
best representative of specific study populations, there is a need to 
incorporate more complex selection regimes by predicting expected 
fitness values on more dynamic fitness landscapes (i.e., with multi-
ple fitness peaks and troughs; Huisman & Tufto, 2012). In addition, 
most variation in salmonid population growth is typically attributed 
to variation in reproductive success during freshwater residency or 
at-sea mortality (Koch & Narum, 2021), not as a direct result of se-
lection on traits during reproduction (as modeled here). Thus, model 
dynamics should be considered as only one of many possible sources 
of variation in population growth in specific study systems.

5  |  CONCLUSIONS

There is greater awareness of the role that eco-evolutionary 
processes contribute to population dynamics (Palkovacs & 
Hendry, 2010), and an urgent need from decision makers for tools 
to understand the consequences of environmental perturbations on 
natural populations. Across many species, climate change is one of 
the most obvious drivers that interacts with timing and assortative 
mating to shape individual fitness (Anderson et al., 2016; Tillotson 
et al.,  2019). Results from our simulations highlight that assum-
ing mating is random when it is non-random may underestimate 

population resilience to perturbations and overestimate the impacts 
of those perturbations on demography. One opportunity for this 
work to inform future management at the population level is through 
strengthened ties to empirical data and monitoring programs. 
Previous research has highlighted the need to collect population-
level data on processes of dispersal, adaptation, and genetic varia-
tion (Eldridge et al., 2010; Lin et al., 2017; Pelletier et al., 2009; Zheng 
et al., 2009). For other aggregate breeders, including some mammal 
or bird species, or sessile species such as plants, collecting additional 
data to inform mate choice may be beneficial (Dittrich et al., 2018; 
Wang et al., 2019). Even in well studied species such as salmonids, 
the effects of mate choice on LRS and demography remains unclear 
(Auld et al., 2019). These additional data sources may be linked to 
our existing framework via statistical models (e.g., generalized linear 
models), and both model and parameter uncertainty may be incorpo-
rated as additional sources of variation.

We expect future research will also improve the statistical mod-
eling underpinning our framework. One potential line of future 
work is to expand on the assumption of Gaussian selection curves 
and include a suite of other parametric approaches that allow for 
greater extremes (e.g., multivariate Student-t distributions). A sec-
ond potential line of research is to investigate the strength or di-
rection of selection on assortative mating in space or time; building 
these trend parameters into our simulation framework is expected 
to improve predictions under future scenarios (such as a warming 
environment). A third avenue of research is extending the general 
framework to multiple populations and to a spatial dimension – this 
may be particularly useful for species such as salmonids, that often 
exist as a metapopulation in both space and time or have overlap-
ping sub-populations of wild and hatchery components. Finally, we 
made a number of specific assumptions to tailor our framework to a 
generalized salmonid life history, and future model applications will 
serve to elucidate how results may change when specific model me-
chanics change to match different life histories. While specific ap-
plications of our framework are expected to vary species to species, 
additional customization of this model will improve inference about 
eco-evolutionary processes in natural populations and provide 
better guidance to natural resource managers in a rapidly changing 
world.

ACKNOWLEDG MENTS
This material is based upon work supported by graduate research 
fellowships to Samuel May by the National Science Foundation 
Graduate Research Fellowship Program under Grant No. DGE-
1762114 and by Sea Grant/NOAA Fisheries from Washington Sea 
Grant, University of Washington, pursuant to National Oceanic 
and Atmospheric Administration Award No. NA20OAR4170465. 
We thank Andrew Berdahl, Katie McElroy, and Timothy Cline for 
early conversations that preceded this work, Lorenz Hauser and 
Robin Waples for guidance and editorial work, and Peter Westley 
for continued support of this research. The views expressed herein 
are those of the authors and do not necessarily reflect the views of 
NOAA or any of its sub-agencies.



14  |    MAY et al.

CONFLIC T OF INTERE S T
The authors report no conflicts of interest.

DATA AVAIL ABLIT Y S TATEMENT
All code and data for this study are provided in our publicly available 
Github repository linked here: https://github.com/SMay1/​Assor​
tative_Mating_QG_IBM and Zenodo linked here: https://zenodo.
org/recor​d/6981706

ORCID
Samuel A. May   https://orcid.org/0000-0002-5312-140X 

R E FE R E N C E S
Anderson, A. M., Novak, S. J., Smith, J. F., Steenhof, K., & Heath, J. A. 

(2016). Nesting phenology, mate choice, and genetic divergence 
within a partially migratory population of American kestrels. The 
Auk: Ornithological Advances, 133(1), 99–109.

Arnold, S. J., Pfrender, M. E., & Jones, A. G. (2001). The adaptive land-
scape as a conceptual bridge between micro-and macroevolution. 
Genetica, 112, 9–32.

Auld, H. L., Noakes, D. L., & Banks, M. A. (2019). Advancing mate choice 
studies in salmonids. Reviews in Fish Biology and Fisheries, 29(2), 
249–276.

Barnett, H. K., Quinn, T. P., Fresh, K. L., Koehler, M. E., Burton, K. D., 
Bhuthimethee, M., & Peterson, N. P. (2019). Differential marking of 
embryos by location and date of release reveals Within-River Natal 
homing and parental influence on progeny return timing in sock-
eye Salmon. Transactions of the American Fisheries Society, 148(2), 
393–405.

Bentzen, P., Olsen, J., McLean, J., Seamons, T., & Quinn, T. (2001). Kinship 
analysis of Pacific salmon: Insights into mating, homing, and timing 
of reproduction. Journal of Heredity, 92(2), 127–136.

Bolnick, D. I., & Kirkpatrick, M. (2012). The relationship between intra-
specific assortative mating and reproductive isolation between di-
vergent populations. Current Zoology, 58(3), 484–492.

Bolnick, D. I., Snowberg, L. K., Patenia, C., Stutz, W. E., Ingram, T., & 
Lau, O. L. (2009). Phenotype-dependent native habitat preference 
facilitates divergence between parapatric lake and stream stick-
leback. Evolution: International Journal of Organic Evolution, 63(8), 
2004–2016.

Brennan, S. R., Schindler, D. E., Cline, T. J., Walsworth, T. E., Buck, G., & 
Fernandez, D. P. (2019). Shifting habitat mosaics and fish produc-
tion across river basins. Science, 364(6442), 783–786.

Bromaghin, J. F., Nielson, R. M., & Hard, J. J. (2011). A model of Chinook 
salmon population dynamics incorporating size-selective exploita-
tion and inheritance of polygenic correlated traits. Natural Resource 
Modeling, 24(1), 1–47.

Brykov, V. A., Kukhlevsky, A., Shevlyakov, E., Kinas, N., & Zavarina, L. 
(2008). Sex ratio control in pink salmon (Oncorhynchus gorbuscha) 
and chum salmon (O. keta) populations: The possible causes and 
mechanisms of changes in the sex ratio. Russian Journal of Genetics, 
44(7), 786–792.

Bürger, R. (1999). Evolution of genetic variability and the advantage of 
sex and recombination in changing environments. Genetics, 153(2), 
1055–1069.

Bürger, R., & Krall, C. (2004). Quantitative-genetic models and chang-
ing environments. In R. Ferriere, U. Dieckmann, & D. Couvet 
(Eds.), Evolutionary conservation biology (pp. 171–187). Cambridge 
University Press.

Bürger, R., & Lynch, M. (1995). Evolution and extinction in a changing 
environment: A quantitative-genetic analysis. Evolution, 49(1), 
151–163.

Carlson, S. M., & Seamons, T. R. (2008). A review of quantitative genetic 
components of fitness in salmonids: Implications for adaptation to 
future change. Evolutionary Applications, 1(2), 222–238.

Charlesworth, B. (1993). Directional selection and the evolution of sex 
and recombination. Genetics Research, 61(3), 205–224.

Connallon, T., & Hall, M. D. (2016). Genetic correlations and sex-specific 
adaptation in changing environments. Evolution, 70(10), 2186–2198.

Cotto, O., Sandell, L., Chevin, L. M., & Ronce, O. (2019). Maladaptive 
shifts in life history in a changing environment. The American 
Naturalist, 194(4), 558–573.

Crespi, B. J. (1989). Causes of assortative mating in arthropods. Animal 
Behavior, 38(6), 980–1000.

Crow, J. F., & Felsenstein, J. (1968). The effect of assortative mating on 
the genetic composition of a population. Eugenics Quarterly, 15(2), 
85–97.

de Borghezan, E. A., da Pinto, K. S., Zuanon, J. A. S., & Pires, T. H. S. 
(2019). Someone like me: Size-assortative pairing and mating in an 
Amazonian fish, sailfin tetra Crenuchus spilurus. PLoS One, 14(9), 
e0222880.

Devaux, C., & Lande, R. (2008). Incipient allochronic speciation due to 
non-selective assortative mating by flowering time, mutation and 
genetic drift. Proceedings of the Royal Society B: Biological Sciences, 
275(1652), 2723–2732.

Dieckmann, U., & Doebeli, M. (1999). On the origin of species by sympat-
ric speciation. Nature, 400(6742), 354–357.

Dittrich, C., Rodríguez, A., Segev, O., Drakulić, S., Feldhaar, H., Vences, 
M., & Rödel, M.-O. (2018). Temporal migration patterns and mat-
ing tactics influence size-assortative mating in Rana temporaria. 
Behavioral Ecology, 29(2), 418–428.

Doctor, K., & Quinn, T. (2009). Potential for adaptation-by-time in sock-
eye salmon (Oncorhynchus nerka): The interactions of body size and 
in-stream reproductive life span with date of arrival and breeding 
location. Canadian Journal of Zoology, 87(8), 708–717.

Duputié, A., Massol, F., Chuine, I., Kirkpatrick, M., & Ronce, O. (2012). 
How do genetic correlations affect species range shifts in a chang-
ing environment? Ecology Letters, 15(3), 251–259.

Duputié, A., Rutschmann, A., Ronce, O., & Chuine, I. (2015). Phenological 
plasticity will not help all species adapt to climate change. Global 
Change Biology, 21(8), 3062–3073.

Eldridge, W. H., Hard, J. J., & Naish, K. A. (2010). Simulating fishery-
induced evolution in Chinook salmon: The role of gear, location, 
and genetic correlation among traits. Ecological Applications, 20(7), 
1936–1948.

Etterson, J. R., & Shaw, R. G. (2001). Constraint to adaptive evolution in 
response to global warming. Science, 294(5540), 151–154.

Evans, M. L., Hard, J. J., Black, A. N., Sard, N. M., & O'Malley, K. G. (2019). 
A quantitative genetic analysis of life-history traits and lifetime re-
productive success in reintroduced Chinook salmon. Conservation 
Genetics, 20(4), 781–799.

Felsenstein, J. (1981). Continuous-genotype models and assortative mat-
ing. Theoretical Population Biology, 19(3), 341–357.

Fisher, R. A. (1918). The correlation between relatives on the supposi-
tion of Mendelian inheritance. Earth and Environmental Science 
Transactions of the Royal Society of Edinburgh, 52(2), 399–433.

Ford, M. J. (2002). Selection in captivity during supportive breed-
ing may reduce fitness in the wild. Conservation Biology, 16(3), 
815–825.

Ford, M. J., Murdoch, A., & Hughes, M. (2015). Using parentage anal-
ysis to estimate rates of straying and homing in Chinook salmon 
(Oncorhynchus tshawytscha). Molecular Ecology, 24(5), 1109–1121.

Garant, D., Forde, S. E., & Hendry, A. P. (2007). The multifarious effects 
of dispersal and gene flow on contemporary adaptation. Functional 
Ecology, 21, 434–443.

Gauzere, J., Teuf, B., Davi, H., Chevin, L. M., Caignard, T., Leys, B., Delzon, 
S., Ronce, O., & Chuine, I. (2020). Where is the optimum? Predicting 
the variation of selection along climatic gradients and the adaptive 

https://orcid.org/0000-0002-5312-140X
https://orcid.org/0000-0002-5312-140X


    |  15MAY et al.

value of plasticity. A case study on tree phenology. Evolution Letters, 
4(2), 109–123.

Godineau, C., Ronce, O., & Devaux, C. (2022). Assortative mating can 
help adaptation of flowering time to a changing climate: Insights 
from a polygenic model. Journal of Evolutionary Biology, 35(4), 
491–508.

Gomulkiewicz, R., & Holt, R. D. (1995). When does evolution by natural 
selection prevent extinction? Evolution, 49, 201–207.

Govaert, L., Fronhofer, E. A., Lion, S., Eizaguirre, C., Bonte, D., Egas, M., 
Hendry, A. P., Martins, A. D. B., Melián, C. J., Raeymaekers, J. A. 
M., Ratikainen, I. I., Saether, B.-E., Schweitzer, J. A., & Matthews, B. 
(2019). Eco-evolutionary feedbacks—Theoretical models and per-
spectives. Functional Ecology, 33(1), 13–30.

Greenwood, P. J., Harvey, P. H., & Perrins, C. M. (1978). Inbreeding and 
dispersal in the great tit. Nature, 271(5640), 52–54.

Guillaume, F., & Whitlock, M. C. (2007). Effects of migration on the ge-
netic covariance matrix. Evolution: International Journal of Organic 
Evolution, 61(10), 2398–2409.

Hanski, I. (1998). Metapopulation dynamics. Nature, 396(6706), 41–49.
Hard, J. (2004). Evolution of Chinook salmon life history under size-

selective harvest. In A. Hendry & S. Stearns (Eds.), Evolution illumi-
nated: Salmon and their relatives (pp. 315–337). Oxford University 
Press.

Hellmann, J. J., & Pineda-Krch, M. (2007). Constraints and reinforcement 
on adaptation under climate change: Selection of genetically cor-
related traits. Biological Conservation, 137(4), 599–609.

Hendry, A. P., & Day, T. (2005). Population structure attributable to re-
productive time: Isolation by time and adaptation by time. Molecular 
Ecology, 14(4), 901–916.

Hendry, A. P., Morbey, Y. E., Berg, O. K., & Wenburg, J. K. (2004). 
Adaptive variation in senescence: Reproductive lifespan in a wild 
salmon population. Proceedings of the Royal Society of London, Series 
B: Biological Sciences, 271(1536), 259–266.

Huisman, J., & Tufto, J. (2012). Comparison of non-Gaussian quan-
titative genetic models for migration and stabilizing selec-
tion. Evolution: International Journal of Organic Evolution, 66(11), 
3444–3461.

Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M., & Cox, P. M. 
(2013). No increase in global temperature variability despite chang-
ing regional patterns. Nature, 500(7462), 327–330.

Jiang, Y., Bolnick, D. I., & Kirkpatrick, M. (2013). Assortative mating in 
animals. The American Naturalist, 181(6), E125–E138.

Jones, A. G., Arnold, S. J., & Bürger, R. (2003). Stability of the G-matrix 
in a population experiencing pleiotropic mutation, stabilizing selec-
tion, and genetic drift. Evolution, 57(8), 1747–1760.

Kingsolver, J. G., Hoekstra, H. E., Hoekstra, J. M., Berrigan, D., Vignieri, 
S. N., Hill, C., Hill, C. E., Hoang, A., Gibert, P., & Beerli, P. (2001). 
The strength of phenotypic selection in natural populations. The 
American Naturalist, 157(3), 245–261.

Koch, I. J., & Narum, S. R. (2021). An evaluation of the potential factors 
affecting lifetime reproductive success in salmonids. Evolutionary 
Applications, 14(8), 1929–1957.

Kopp, M., & Matuszewski, S. (2014). Rapid evolution of quantitative 
traits: Theoretical perspectives. Evolutionary Applications, 7(1), 
169–191.

Kopp, M., Servedio, M. R., Mendelson, T. C., Safran, R. J., Rodríguez, R. 
L., Hauber, M. E., Scordato, E. C., Symes, L. B., Balakrishnan, C. N., 
Zonana, D. M., & van Doorn, G. S. (2018). Mechanisms of assorta-
tive mating in speciation with gene flow: Connecting theory and 
empirical research. The American Naturalist, 191(1), 1–20.

Lande, R. (1976). Natural selection and random genetic drift in pheno-
typic evolution. Evolution, 30, 314–334.

Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, 
applied to brain: Body size allometry. Evolution, 33, 402–416.

Lande, R., & Arnold, S. J. (1983). The measurement of selection on cor-
related characters. Evolution, 37, 1210–1226.

Lande, R., & Shannon, S. (1996). The role of genetic variation in adap-
tation and population persistence in a changing environment. 
Evolution, 50, 434–437.

Laughlin, D. C. (2018). Rugged fitness landscapes and Darwinian demons 
in trait-based ecology. New Phytologist, 217(2), 501–503.

Lin, J. E., Hard, J. J., Hilborn, R., & Hauser, L. (2017). Modeling local adap-
tation and gene flow in sockeye salmon. Ecosphere, 8(12), e02039.

Lin, J. E., Hard, J. J., Naish, K. A., Peterson, D., Hilborn, R., & Hauser, 
L. (2016). It's a bear market: Evolutionary and ecological effects 
of predation on two wild sockeye salmon populations. Heredity, 
116(5), 447–457.

Lynch, M. (1991). Methods for the analysis of comparative data in evolu-
tionary biology. Evolution, 45(5), 1065–1080.

May, S. A. (2022). Drivers and fitness consequences of dispersal and 
structure in wild sockeye Salmon populations (Oncorhynchus nerka). 
University of Washington.

McBride, G., & Robertson, A. (1963). Selection using assortative mating 
in Drosophila melanogaster. Genetics Research, 4(3), 356–369.

McMahon, J. (2021). Ocean and stream ecology of adult hatchery and wild 
pink salmon. University of Alaska Fairbanks.

Moland, E., Carlson, S. M., Villegas-Ríos, D., Ree Wiig, J., & Moland 
Olsen, E. (2019). Harvest selection on multiple traits in the wild 
revealed by aquatic animal telemetry. Ecology and Evolution, 9(11), 
6480–6491.

Nahum, J. R., Godfrey-Smith, P., Harding, B. N., Marcus, J. H., Carlson-
Stevermer, J., & Kerr, B. (2015). A tortoise–hare pattern seen in 
adapting structured and unstructured populations suggests a 
rugged fitness landscape in bacteria. Proceedings of the National 
Academy of Sciences, 112(24), 7530–7535.

Palkovacs, E. P., & Hendry, A. P. (2010). Eco-evolutionary dynamics: 
Intertwining ecological and evolutionary processes in contempo-
rary time. F1000 Biology Reports, 2, 1.

Pelletier, F., Garant, D., & Hendry, A. (2009). Eco-evolutionary dynamics. 
Philosophical Transactions of the Royal Society, B: Biological Sciences, 
364, 1483–1489.

Peterson, D. A., Hilborn, R., & Hauser, L. (2014). Local adaptation limits 
lifetime reproductive success of dispersers in a wild salmon meta-
population. Nature Communications, 5(1), 1–7.

Quinn, T. P. (2018). The behavior and ecology of Pacific salmon and trout. 
University of Washington Press.

Quinn, T. P., Adkison, M. D., & Ward, M. B. (1996). Behavioral tactics 
of male sockeye salmon (Oncorhynchus nerka) under varying opera-
tional sex ratios. Ethology, 102(2), 304–322.

Quinn, T. P., Hodgson, S., Flynn, L., Hilborn, R., & Rogers, D. E. (2007). 
Directional selection by fisheries and the timing of sockeye salmon 
(Oncorhynchus nerka) migrations. Ecological Applications, 17(3), 731–739.

Quinn, T. P., McGinnity, P., & Reed, T. E. (2016). The paradox of “pre-
mature migration” by adult anadromous salmonid fishes: Patterns 
and hypotheses. Canadian Journal of Fisheries and Aquatic Sciences, 
73(7), 1015–1030.

Reed, T. E., Schindler, D. E., Hague, M. J., Patterson, D. A., Meir, E., 
Waples, R. S., & Hinch, S. G. (2011). Time to evolve? Potential evolu-
tionary responses of Fraser River sockeye salmon to climate change 
and effects on persistence. PLoS One, 6(6), e20380.

Rios Moura, R., Oliveira Gonzaga, M., Silva Pinto, N., Vasconcellos-Neto, 
J., & Requena, G. S. (2021). Assortative mating in space and time: 
Patterns and biases. Ecology Letters, 24(5), 1089–1102.

Roff, D. A. (2012). Evolutionary quantitative genetics. Springer Science & 
Business Media.

Roff, D. A., & Mousseau, T. (2005). The evolution of the phenotypic co-
variance matrix: Evidence for selection and drift in Melanoplus. 
Journal of Evolutionary Biology, 18(4), 1104–1114.

Rolán-Alvarez, E., Carvajal-Rodríguez, A., de Coo, A., Cortés, B., Estévez, 
D., Ferreira, M., González, R., & Briscoe, A. D. (2015). The scale-of-
choice effect and how estimates of assortative mating in the wild can 
be biased due to heterogeneous samples. Evolution, 69(7), 1845–1857.



16  |    MAY et al.

Rueger, T., Gardiner, N. M., & Jones, G. P. (2016). Size matters: Male and 
female mate choice leads to size-assortative pairing in a coral reef 
cardinalfish. Behavioral Ecology, 27, 1585–1591.

Schindler, D. E., Hilborn, R., Chasco, B., Boatright, C. P., Quinn, T. P., 
Rogers, L. A., & Webster, M. S. (2010). Population diversity and 
the portfolio effect in an exploited species. Nature, 465(7298), 
609–612.

Sørdalen, T. K., Halvorsen, K. T., Harrison, H. B., Ellis, C. D., Vøllestad, 
L. A., Knutsen, H., Moland, E., & Olsen, E. M. (2018). Harvesting 
changes mating behaviour in European lobster. Evolutionary 
Applications, 11(6), 963–977.

Tillotson, M. D., Barnett, H. K., Bhuthimethee, M., Koehler, M. E., & Quinn, 
T. P. (2019). Artificial selection on reproductive timing in hatchery 
salmon drives a phenological shift and potential maladaptation to 
climate change. Evolutionary Applications, 12(7), 1344–1359.

Utagawa, U., Higashi, S., Kamei, Y., & Fukamachi, S. (2016). 
Characterization of assortative mating in medaka: Mate discrimi-
nation cues and factors that bias sexual preference. Hormones and 
Behavior, 84, 9–17.

Via, S., & Lande, R. (1985). Genotype-environment interaction and the 
evolution of phenotypic plasticity. Evolution, 39(3), 505–522.

Vinkhuyzen, A. A., Van Der Sluis, S., Maes, H. H., & Posthuma, D. (2012). 
Reconsidering the heritability of intelligence in adulthood: Taking 
assortative mating and cultural transmission into account. Behavior 
Genetics, 42(2), 187–198.

Wang, D., Forstmeier, W., Valcu, M., Dingemanse, N. J., Bulla, M., 
Both, C., Duckworth, R. A., Kiere, L. M., Karell, P., Albrecht, T., & 
Kempenaers, B. (2019). Scrutinizing assortative mating in birds. 
PLoS Biology, 17(2), e3000156.

Waples, R. S. (2022). THEWEIGHT: A simple and flexible algorithm for 
simulating non-ideal, age-structured populations. Methods in 
Ecology and Evolution, 13, 2030–2041.

Waples, R. S., Ford, M. J., Nichols, K., Kardos, M., Myers, J., Thompson, 
T. Q., Anderson, E. C., Koch, I. J., McKinney, G., Miller, M. R., Naish, 
K., Narum, S. R., O'Malley, K. G., Pearse, D. E., Pess, G. R., Quinn, 

T. P., Seamons, T. R., Spidle, A., Warheit, K. I., & Willis, S. C. (2022). 
Implications of large-effect loci for conservation: A review and case 
study with Pacific Salmon. Journal of Heredity, 113(2), 121–144.

Waples, R. S., & Waples, R. K. (2011). Inbreeding effective population 
size and parentage analysis without parents. Molecular Ecology 
Resources, 11, 162–171.

Wright, S. (1921). Systems of mating. III. Assortative mating based on 
somatic resemblance. Genetics, 6(2), 144–161.

Yeakel, J. D., Gibert, J. P., Gross, T., Westley, P. A., & Moore, J. W. (2018). 
Eco-evolutionary dynamics, density-dependent dispersal and col-
lective behaviour: Implications for salmon metapopulation robust-
ness. Philosophical Transactions of the Royal Society, B: Biological 
Sciences, 373(1746), 20170018.

Zheng, C., Ovaskainen, O., & Hanski, I. (2009). Modelling single nucle-
otide effects in phosphoglucose isomerase on dispersal in the 
Glanville fritillary butterfly: Coupling of ecological and evolution-
ary dynamics. Philosophical Transactions of the Royal Society, B: 
Biological Sciences, 364(1523), 1519–1532.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

How to cite this article: May, S. A., Hard, J. J., Ford, M. J., 
Naish, K. A., & Ward, E. J. (2023). Assortative mating for 
reproductive timing affects population recruitment and 
resilience in a quantitative genetic model. Evolutionary 
Applications, 00, 1–16. https://doi.org/10.1111/eva.13524

https://doi.org/10.1111/eva.13524

	Assortative mating for reproductive timing affects population recruitment and resilience in a quantitative genetic model
	Abstract
	1|INTRODUCTION
	2|METHODS
	2.1|Model overview and assumptions
	2.2|Model initialization
	2.3|Fitness estimation module
	2.4|Reproduction module
	2.5|Inheritance module
	2.6|Model outputs
	2.7|Sensitivity analyses
	2.7.1|Experiment 1: Assortative mating
	2.7.2|Experiment 2: Trait correlation
	2.7.3|Experiment 3: Environmental variability
	2.7.4|Experiment 4: Strength of selection


	3|RESULTS
	3.1|Experiment 1: Assortative mating
	3.2|Experiment 2: Trait correlations
	3.3|Experiment 3: Interannual environmental variability
	3.4|Experiment 4: Strength of selection

	4|DISCUSSION
	4.1|Explanation and implications of assortative mating simulations
	4.2|Trait correlations hinder evolution to fitness optima
	4.3|Simulation outcomes for environmental variation and selection allow for empirical parameterization

	5|CONCLUSIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	DATA AVAILABLITY STATEMENT
	REFERENCES


